immersed$97783$ - traduzione in olandese
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

immersed$97783$ - traduzione in olandese

DIFFERENTIABLE FUNCTION WHOSE DERIVATIVE IS EVERYWHERE INJECTIVE
Immersed plane curve; Immersed surface
  • The [[Klein bottle]], immersed in 3-space.
  • The [[Möbius strip]] does not immerse in codimension 0 because its tangent bundle is non-trivial.
  • The [[quadrifolium]], the 4-petaled rose.
  • p}}.

immersed      
adj. ondergedompeld; verdiept zijn in

Definizione

Immersed
·p.p. & ·adj Growing wholly under water.
II. Immersed ·Impf & ·p.p. of Immerse.
III. Immersed ·p.p. & ·adj Deeply occupied; engrossed; entangled.
IV. Immersed ·p.p. & ·adj Deeply plunged into anything, especially a fluid.

Wikipedia

Immersion (mathematics)

In mathematics, an immersion is a differentiable function between differentiable manifolds whose differential (or pushforward) is everywhere injective. Explicitly, f : MN is an immersion if

D p f : T p M T f ( p ) N {\displaystyle D_{p}f:T_{p}M\to T_{f(p)}N\,}

is an injective function at every point p of M (where TpX denotes the tangent space of a manifold X at a point p in X). Equivalently, f is an immersion if its derivative has constant rank equal to the dimension of M:

rank D p f = dim M . {\displaystyle \operatorname {rank} \,D_{p}f=\dim M.}

The function f itself need not be injective, only its derivative must be.

A related concept is that of an embedding. A smooth embedding is an injective immersion f : MN that is also a topological embedding, so that M is diffeomorphic to its image in N. An immersion is precisely a local embedding – that is, for any point xM there is a neighbourhood, UM, of x such that f : UN is an embedding, and conversely a local embedding is an immersion. For infinite dimensional manifolds, this is sometimes taken to be the definition of an immersion.

If M is compact, an injective immersion is an embedding, but if M is not compact then injective immersions need not be embeddings; compare to continuous bijections versus homeomorphisms.